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Abstract 

This investigation related with the study of the influence of hall current of a viscous 

incompressible electrically conducting free convection fluid flow, through the parallel plates in a 

rotating system under the action of inclined magnetic field. It is considered that the channel is 

being rotated with uniform angular velocity about an axis normal to the plates. To obtain the 

dimensionless momentum, and induction equations, usual non-dimensional variables have been 

used. The explicit finite difference technique has been used for numerical solution. The stability 

conditions and convergence criteria of the explicit finite difference scheme are established for 

finding the restriction of the values of various parameters to get more accuracy. The effects of 

these parameters have been explained by the figures of local and average shear stress and current 

density at the moving plate. 
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Nomenclature 

:q  Fluid velocity :  Angle of inclination 

:P  Fluid pressure including centrifugal force                     :  Electrical conductivity of the fluid 
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:J  Current density 
:  Fluid density 

:Ω  Angular velocity :  Co-efficient of viscosity 

:t  Time    :e  Magnetic permeability                                                  

:  Dimensionless time    :e  Cyclotron frequency 

ˆ :k  Unit vector along z -axis                                             :e  Electron collision time 

:u  Velocity component in the x direction :  Co-efficient of kinematic viscosity 

:v  Velocity component in the y direction :  Density of the fluid in the boundary 

layer 

:w  Velocity component in the z direction :xB  
Primary inclined Magnetic field 

:  Stressing factor :yB  
Secondary inclined Magnetic field 

:L  Length of the boundary layer :R  Rotation parameter 

:  Differential operator :m  Hall parameter 

:E  Electric field 
2 :M  Magnetic parameter 

:B  Magnetic induction vector      :
gr

P  Constant pressure gradient  

0 :B  
Magnetic flux      :mP  Magnetic parameter 

 

1. Introduction 

The study of MHD free convection fluid flow through parallel plates in the presence of 

inclined magnetic field with hall current in a rotating system has become in several industrial 

processes, scientific and engineering fields. Magnetic inclination is the angle that the 

geomagnetic field is tilted with respect to the surface of the earth. Magnetic inclination varies 

from 900(perpendicular to the surface) at the magnetic poles to 00 (parallel to the surface) at the 

magnetic equator. An inclined magnetic field is just a magnetic field with a nonzero inclination. 

In astrophysics, they usually mean the radial direction. The radial direction means the normal 

(perpendicular) direction to the surface (of the Sun etc.). Non-inclined magnetic field is radial; an 

inclined magnetic field has field lines that are twisted around the Sun (or another object) a little 

bit. To summarize, the adjective "inclined" doesn't carry any special physical content - it just 

refers to the geometrical arrangement of the objects relatively to the field. Haque et al. (2009), 

observed Transient heat and mass transfer by mixed convection flow from a vertical porous plate 

with induced magnetic field, constant heat and mass fluxes. The Hall Effect is the production of a 
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voltage difference across an electrical conductor, transverse to an electric current in the conductor 

and a magnetic field perpendicular to the current. It is well known that, the effect of Hall current 

become significant at low density of an ionized fluid as stated by Cowling (1957). In the case of 

an electrically conducting rotating gas at low pressure, there has an interaction of the magnetic 

field with the electric field of both the electrons and the ionized atoms of the gas. If the magnetic 

field is perpendicular to the electric field, a current is induced in the conductive rotating gas 

whose direction is perpendicular to the both the electric field and the magnetic field. Sutton and 

Sherman (1965) investigated the hydrodynamic flow of a viscous ionized gas between two 

parallel plates taking Hall effects into account. The Hall effects on an unsteady MHD free 

convection heat and mass transfer flow through a porous medium near an infinite vertical porous 

plate with constant heat flux have been analyzed by Sattar and Alam (1995). Crammer K.R. 

and Pai S.I., (1973) studied the influence of electromagnetic force. Hall effects on MHD flow in 

a rotating channel in the presence of inclined magnetic field have been investigated by Ghosh 

and Bhattacharjee (2000). Edmad et al. (2005) studied the effects of Hall current on magneto 

hydrodynamic free convection flow past a semi-infinite vertical plate with mass transfer. 

Micropolar fluid behaviours on unsteady MHD heat and Mass transfer flow with constant heat 

and mass fluxes, joule heating and viscous dissipation has been investigated by Ziaul Haque et 

al. (2011). The combined effect of Hall and ion-slip currents on unsteady MHD Couette flows in 

a rotating system has been investigated by Jha and Apere (2010). Seth et al. (2010) studied the 

Hartmann flow in a rotating system in the presence of inclined magnetic field with Hall effects. 

Our aim is to investigate numerically the fluid flow through a rotating system in the presence of 

inclined magnetic field with hall current. In this study the two-dimensional case with hall current 

has been considered. The governing equations of the problem contain a system of partial 

differential equations which are transformed by usual transformation into a non-dimensional 

system of non-linear coupled partial differential equations. The obtained systems are solved 

numerically by a finite difference method. The effects of some well known parameters have been 

verified by analyzing the figures of local and average shear stresses and current densities at the 

moving plate. 

 

2. Mathematical model of the flow 

A flow model of the fluid flow is considered for a rotating system in the presence of inclined 

magnetic field with hall current. It is also assumed that, the flow is between two parallel 

horizontal plates in where the lower plate is fixed. Introducing the Cartesian coordinate system, 

the x  –axis is chosen along the plates in horizontal direction of the flow and z –axis is normal to 

it. Both the fluid and the channel are in a state of rigid body rotation with uniform angular 

velocity   about axis. The fluid is permeated by a uniform magnetic flux density  applied 

in a direction, which is inclined at an angle  with the positive direction of axis in plane. 

The physical configuration and coordinate system of the present investigation are shown in the 

following Figs. 1 and 2. 
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Within the framework of the above stated assumptions relevant to the two-dimensional problem 

are governed by the following system of coupled non-linear partial differential equations. 

Continuity equation 

0
u w

x z

  
 

 
                                                                                                                                  (1) 

Momentum equation 
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    
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       

    
                                                            (3) 

Fig.2. Geometrical configuration and coordinate system 

Fig.1. Physical representation of the problem 
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Magnetic Induction equation 
2 '' 2 '

0 2 2

1 yx x

e e

BB Bu m
B cos cos

t z z z
 

 

 
  

   
                                                                           

(4)                      
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0

1
cos cos

y y x x x

e e

B B B B Bv m
B B

t z z B z x z
 

 

      
    

      
                                               (5) 

The corresponding boundary conditions for the problem are; 

0, 0, 0, 0
yx

BB
u v at z L

z z


      

 
 for 0t                                                                       (6) 

 

3. Solution 

Since the solutions of the governing equations under the initial and boundary conditions will 

be based on a finite difference method, it is required to make the said equations dimensionless. 

For this purpose the following dimensionless variables are introduced as; 

'' 22

0

2

0 0

, , , , , , , ,
yx

x y

e e

BB tUx z u L v L w L L p
u v w p B B

L L B B
  

        

   
          

After simplification the equations (1)-(5) with corresponding boundary condition (6), the 

following nonlinear coupled partial differential equations are obtained in terms of dimensionless 

variables; 

0
u w

 

 
 

 
                                                                                                                                   (7) 
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yBv v v v
u w Ru M cos
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2 2
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y y x x x
m m

B B B B Bv
P cos m cos P 

     
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(11)

 

The dimensionless boundary conditions are; 

0, 0, 0, 0 1
yx

BB
u v at

 


     

 
for 0t  ;                                                                      (12) 

where   represents the dimensionless time,   and   are the dimensionless Cartesian 

coordinates, ,u v and w are the dimensionless velocity components, ,x yB B are the dimensionless 

primary and secondary inclined magnetic fields. Here, 

2L
R




  is rotation parameter which is reciprocal of Ekman number, 

gr

p
P




 


 is non-dimensional constant pressure gradient, 
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2 2
2 0B L

M



  is magnetic parameter which is square of Hartmann number. 

m eP    is magnetic Prandtl number.  

e em    is the hall parameter. 

 

3.1 Shear stress and Current density 

The quantities of chief physical interest on various parameters are local and average shear 

stress. The following equations represent the local and average shear stress at the plate. 

For primary velocity, the local shear stress,
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For secondary velocity, the local shear stress, 
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From the inclined magnetic field, the effects of various parameters on local and average current 

density have been calculated. The following equations represent the local and average current 

density at the plate. 

The local current density  
0
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respectively. The local current density 
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3.2 Numerical Technique 

For  simplicity  the  explicit finite  difference  method  has been used to solve  equations (7) 

- (11) subject to the conditions  given  by  (12). To  obtain  the  solution of the difference   

equations,  the  region  of   the  flow  is  divided into a grid of lines parallel to  and   axes 

where  axes is taken along the plates  and   axes  is normal to the plates. Here the plate is 

considered of height max 100   i.e.  varies from 0  to 100and regard max 2   i.e.  varies from 
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1 to1 .There are  44m   and 44n   grid spacing in the   and   directions respectively and 

taken as follows,  2.273 0 44     ,  0.0455 1 1       with the smaller time step, 

0.001  . These mesh steps are shown in Fig.3. 

 

 

 

 

 

 

 

 

 

Let , , x yu v B and B  
 
denote the values of , , x yu v B and B at the end of a time-step respectively. 

Using explicit finite difference approximation for the partial differential equation, Eqs. (7) - 

(11) are obtained in the form of an appropriate set of finite difference equations. 
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Fig.3. Explicit finite difference system grid 
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with the boundary conditions; 

, ,

' '

. ,0, 0, 0, 0 1
i j i ji j i j x yu v B B at       for 0t 

                                                            
(18) 

 

Here   the subscripts  and designate the grid points with coordinates respectively. 

During any one time step, the coefficients  appearing in equations (13), (14), 

(15), (16) and (17) are created as constants. Then at the end of any time-step the new primary 

velocity , secondary velocity  and the new induced magnetic fields at all interior nodal 

points may be obtained by successive applications of   the above finite difference equations. This  

process is repeated in time and provided  the time-step is sufficiently small,  should  

eventually  converge  to  values which approximate the  steady-state solution of equations  (13), 

(14), (15) ), (16) and (17).  

The effects of relevant parameters have been verified by analyzing the figures of local and 

average shear stresses and current density at the plates of channel. The numerical values of the 

local shear stresses and local current density are evaluated by Five-point approximate formula 

and the average shear stresses and average current density are calculated by the Simpson’s  

integration rule. The obtained values are graphically shown in Figs. 4-51. 

 

4. Stability and convergence analysis  

The stability conditions of the finite difference method are; 

 
2

2 1
1

mP






 


 

And convergence limitation of the problem is 0.966mP  . 

 

5. Results and Discussion 

Using the numerical values of the equations of this model obtained by finite difference 

technique, the graphs of non-dimensional primary velocity  u , secondary velocity  v , primary 

inclined magnetic field  xB , secondary inclined magnetic field  yB  distribution within the 

boundary layer have been computed for different values of various parameters. To observe the 

physical situation of the problem, the steady-state solutions have been illustrated in Figs. 4-51. 

To obtain the steady-state solutions, the computation has been carried out up to 80  .  

The behavior of different parameters on primary velocity, secondary velocity and inclined 

magnetic fields are justified by the effect of local and average shear stresses and current densities 

on these parameters i.e. rotation parameter  R , hall parameter  m , magnetic parameter  2M , 
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magnetic prandtl number  mP , constant pressure gradient  
gr

P  and angle of inclination    in 

case of moving plate.   

For this purpose the numerical solutions of the above mentioned quantities for those parameters 

are computed and the obtained values are plotted in Figs. 4-51.  

Figures 4-27 are represented for local case of shear stresses and current densities in case of 

moving plate. 

The steady-state local shear -stress and local current density profiles for different values of R  in 

case of moving plate are shown in Figs.4-7. As displayed in Figs. 4 and 5, the local shear stress in 

x  and y   direction show a decreasing effect with the increase of R . But the local current 

density profiles in x  and y directions have an increasing effect with the rise of R , as shown in 

Figs. 6-7. 

Figures 8-11 are shown for the effect of hall parameter m on local shear stresses and local current 

densities in case of moving plate. As represented in Figs. 8 and 9, the local shear stress in x  

and y  direction there has a decreasing effect on m . From Figs. 10 and 11, it can be observed 

that the local current density in x direction has increasing effect while the local current density 

profiles in y direction decrease with the increase of hall parameter.  

The displayed Figs. 12-15 show the effect of magnetic parameter 2M on local shear stresses and 

current densities in case of moving plate. Figures 12 and 13 represent that local shear stresses in 

x  and y direction show increasing effect. The local current density profiles in x  and 

y directions show decreasing effect with the increase of 2M as in Figs. 14 and 15. 

The curve of local shear stresses and local current densities in case of moving plate are presented 

in Figs. 16-19 for magnetic prandtl number
mP . The local shear stress in x  direction shows a 

increasing effect as seen in Fig. 16, while the local shear stress profiles in y   direction decrease 

slightly with 
mP as plotted in Fig.17. The local current density profiles in x direction show 

minor effect with the increase of 
mP  according to Fig. 18. In Fig. 19, the local current density 

profiles in y direction show increasing effect on
mP .  

Figures 20-23 are shown for the effect of constant pressure gradient  
gr

P  in case of moving plate. 

The local shear stress in x direction shows an increasing effect on the rise of 
gr

P as in Fig. 20. 

But the local shear stress in y direction and local current density in x direction have a 

decreasing effect as displayed in Figs. 21 and 22. Again the local current density in y  direction 

has an increasing effect as displayed in Figs. 23. 

The profiles of steady state local shear stresses and local current densities in case of moving plate 

for different values of angle of inclination   are represented in Fig. 24-27. The local shear 

stresses in x  and y direction shows a decreasing effect as seen in Figs. 24 and 25. But in Figs.  
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Fig.4. Steady-state local shear stress in x  direction for 

different values of  R  at 
045  in case of moving plate 

Fig.5. Steady-state local shear stress in y  direction for 

different values of  R  at 
045  in case of moving plate 

Fig.6. Steady-state local current density in x  direction for 

different values of  R  at 
045  in case of moving plate  

Fig.7. Steady-state local current density in y  direction for 

different values of  R  at 
045  in case of moving plate  

Fig.9. Steady-state local shear stress in y  direction for 

different values of  m  at 
045  in case of moving plate  

Fig.8. Steady-state local shear stress in x  direction for 

different values of  m  at 
045  in case of moving plate  
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Fig.10. Steady-state local current density in x  direction for 

different values of  m  at 
045   in case of moving plate  

Fig.11. Steady-state local current density in y  direction for 

different values of  m  at 
045  in case of moving plate  

Fig.12. Steady-state local shear stress in x  direction for 

different values of  
2M  at 

045  in case of moving plate  

Fig.14. Steady-state local current density in x  direction for 

different values of  
2M  at 

045   in case of moving plate  

Fig.15. Steady-state local current density in y  direction for 

different values of  
2M  at 

045  in case of moving plate  

Fig.13. Steady-state local shear stress in y  direction for 

different values of  
2M  at 

045  in case of moving plate  
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Fig.21. Steady-state local shear stress in y  direction for 

different values of  
gr

P  at 
045  in case of moving plate  

Fig.19. Steady-state local current density in y  direction for 

different values of  
mP  at 

045  in case of moving plate  

Fig.16. Steady-state local shear stress in x  direction for 

different values of  
mP  at 

045   in case of moving plate  

Fig.17. Steady-state local shear stress in y  direction for 

different values of  
mP  at 

045  in case of moving plate  

Fig.20. Steady-state local shear stress in x  direction for 

different values of  
gr

P  at 
045  in case of moving plate  

Fig.18. Steady-state local current density in x  direction for 

different values of  
mP  at 

045  in case of moving plate  
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Figures 28-51 are represented for average case of shear stresses and current densities on various 

parameters in case of moving plate. 

 

26 and 27, the local current density profiles in x  and y direction show an increasing effect with 

the increase of  . 

As displayed in Figs. 28 and 29, the average shear stress in x and y direction show a decreasing 

effect with the increase of rotation parameter R . But the average current density profiles in 

x and y direction have an increasing effect with the rise of R as shown in Figs. 30 and 31. 
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Fig.23. Steady-state local current density in y  direction for 

different values of  
gr

P  at 
045   in case of moving plate  

Fig.22. Steady-state local current density in x  direction for 

different values of  
gr

P  at 
045  in case of moving plate  

Fig.24. Steady-state local shear stress in x  direction for 

different values of  in case of moving plate  

Fig.25. Steady-state local shear stress in y  direction for 

different values of   in case of moving plate  

Fig.26. Steady-state local current density in x  direction for 

different values of    in case of moving plate   

Fig.27. Steady-state local current density in y  direction for 

different values of   in case of moving plate   
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Figures 32-35 are shown for the effect of hall parameter m on average shear stresses and average 

current densities in case of moving plate. As represented in Figs. 32 and 33, the average shear stress 

in x and y direction has a decreasing effect on m . From Figs. 34 and 35, it can be observed that 

the average current density profiles in x direction has increasing effect while the average current 

density profiles in y direction decrease with the increase of hall parameter.  

Figures 36 and 37 represent that the average shear stress in x and y direction show increasing 

effect for magnetic parameter 
2M . The average current density profiles in x and y direction show 

decreasing effect with the increase of 2M as in Figs. 38 and 39.  

The average shear stress in x and y direction show a decreasing effect before 10  (approx.) and 

after this they have minor effect on the magnetic prandtl number mP   as seen in Figs. 40 and 41. 

From Fig. 42, the average current density profiles in x direction show cross-flow effect i.e. 

increase before 20  (approx.) and then the reverse effect occurs. The average current density 

profiles in y   direction have an increasing effect on 
mP  as in Fig. 43.  

The average shear stress in x direction shows an increasing effect on the rise of constant pressure 

gradient  
gr

P as in Fig. 44. As displayed in Figs. 45, and 46, the average shear stress in 

y direction and current density in x direction have a decreasing effect but there has an 

increasing effect for current density in y direction on  
gr

P  as in Fig. 47.  

The profiles of steady state average shear stresses and current densities in case of moving plate for 

different values of angle of inclination 
 
are represented in Figs. 48-51. The average shear stresses 

in x and y direction show a decreasing effect with   as seen in Figs. 48 and 49. As in Figs. 50 

and 51, the average current density profiles in both x and y direction show an increasing effect 

with the increase of  . 
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Fig.28. Steady-state average shear stress in x  direction for 

different values of  R  at 
045  in case of moving plate   

Fig.29. Steady-state average shear stress in y  direction for 

different values of  R  at 
045  in case of moving plate   

Fig.31. Steady-state average current density in y  direction for 

different values of  R  at 
045  in case of moving plate   

Fig.33. Steady-state average shear stress in y  direction for 

different values of  m  at 
045  in case of moving plate   

Fig.30. Steady-state average current density in x  direction for 

different values of  R  at 
045  in case of moving plate   

Fig.32. Steady-state average shear stress in x  direction for 

different values of  m  at 
045   in case of moving plate   
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 Fig.38. Steady-state average current density in x  direction for 

different values of  
2M  at 

045  in case of moving plate   

Fig.34. Steady-state average current density in x  direction for 

different values of  m  at 
045  in case of moving plate   

Fig.35. Steady-state average current density in y  direction for 

different values of  m  at 
045  in case of moving plate   

Fig.36. Steady-state average shear stress in x  direction for 

different values of  
2M  at 

045   in case of moving plate   

Fig.37. Steady-state average shear stress in y  direction for 

different values of  
2M  at 

045  in case of moving plate   

Fig.39. Steady-state average current density in y  direction for 

different values of  
2M  at 

045  in case of moving plate   



65 
 

 

 

 


1.2 1.5 1.8

-180

-150

-120

-90

-60

-30

0
P

rg
=3.0

P
rg

=5.0

P
rg

=7.0

yA

M
2
=1.0, R=0.4,

P
m
=3.0, m=0.3

Fig.40. Steady-state average shear stress in x  direction for 

different values of  
mP  at 

045  in case of moving plate   

Fig.41. Steady-state average shear stress in y  direction for 

different values of  
mP  at in case of moving plate  

045   

Fig.42. Steady-state average current density in x  direction for 

different values of  
mP  at 

045   in case of moving plate   

Fig.43. Steady-state average current density in y  direction for 

different values of  
mP  at 

045   in case of moving plate   

Fig.44. Steady-state average shear stress in x  direction for 

different values of  
gr

P  at 
045   in case of moving plate   

Fig.45. Steady-state average shear stress in y  direction for 

different values of  
gr

P  at 
045   in case of moving plate   
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Fig.48. Steady-state average shear stress in x  direction for 

different values of    in case of moving plate   

Fig.50. Steady-state average current density in 

x  direction for different values of    in case of moving 

plate   

Fig.51. Steady-state average current density in y  direction 

for different values of   in case of moving plate   

Fig.49. Steady-state average shear stress in y  direction for 

different values of  in case of moving plate   

Fig.46. Steady-state average current density in x  direction for 

different values of  
gr

P  at 
045  in case of moving plate   

Fig.47. Steady-state average current density in y  direction for 

different values of  
gr

P  at 
045   in case of moving plate   



67 
 

Conclusions 

The explicit finite difference solutions of fluid flow through parallel plates in the presence of 

hall current with inclined magnetic field in a rotating system for 
045   is investigated. Some 

important findings of this investigation are listed below. 

1. The local shear stress profiles in x direction in case of moving plate decrease with 

the increase of , , mR m P and  and increase with the increase of 2

gr
M and P . 

2. The local shear stress profiles in y direction in case of moving plate decrease with 

the increase of , , ,
gm rR m P P and  and increase with the increase of 2M  . 

3. The local current density profiles in x direction in case of moving plate increase 

with the increase of ,R mand , decrease with the increase of 2

gr
M and P and have 

minor effect for
mP .  

4. The local current density profiles in y direction in case of moving plate increase 

with the increase of , ,
gm rR P P and  and decrease with the increase of 2mand M . 

5. The average shear stress profiles in x direction in case of moving plate decrease 

with the increase of , , mR m P and , increase with the increase of 2

gr
M and P . 

6. The average shear stress profiles in y direction in case of moving plate decrease 

with the increase of , , ,
gm rR m P P and  and increase with the increase of 2M . 

7. The average current density profiles in x direction in case of moving plate increase 

with the increase of ,R mand , decrease with the increase of 2

gr
M and P  and have 

cross flow effect for
mP .  

8. The average current density profiles in y direction in case of moving plate increase 

with the increase of , ,
gm rR P P and  and decrease with the increase of 2mand M . 

 

The findings may be useful for the study of movement of oil or gas, producing electricity; these 

results are also of great interest in geophysics, astrophysics and fluid engineering. As the basis of 

many scientific and engineering applications, for studying more complex problems involving the 

flow of electrically conducting fluids, it is assumed that the present investigation of fluid flow in the 

presence of inclined magnetic field with hall current in a rotating system can be utilized.  
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